Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(1): 58, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233399

RESUMEN

MitoKATP is a channel of the inner mitochondrial membrane that controls mitochondrial K+ influx according to ATP availability. Recently, the genes encoding the pore-forming (MITOK) and the regulatory ATP-sensitive (MITOSUR) subunits of mitoKATP were identified, allowing the genetic manipulation of the channel. Here, we analyzed the role of mitoKATP in determining skeletal muscle structure and activity. Mitok-/- muscles were characterized by mitochondrial cristae remodeling and defective oxidative metabolism, with consequent impairment of exercise performance and altered response to damaging muscle contractions. On the other hand, constitutive mitochondrial K+ influx by MITOK overexpression in the skeletal muscle triggered overt mitochondrial dysfunction and energy default, increased protein polyubiquitination, aberrant autophagy flux, and induction of a stress response program. MITOK overexpressing muscles were therefore severely atrophic. Thus, the proper modulation of mitoKATP activity is required for the maintenance of skeletal muscle homeostasis and function.


Asunto(s)
Adenosina Trifosfato , Canales de Potasio , Adenosina Trifosfato/metabolismo , Canales de Potasio/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Mitocondrias Cardíacas/metabolismo
2.
Autophagy ; 19(12): 3221-3229, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37528588

RESUMEN

COL6 (collagen type VI)-related myopathies (COL6-RM) are a distinct group of inherited muscle disorders caused by mutations of COL6 genes and characterized by early-onset muscle weakness, for which no cure is available yet. Key pathophysiological features of COL6-deficient muscles involve impaired macroautophagy/autophagy, mitochondrial dysfunction, neuromuscular junction fragmentation and myofiber apoptosis. Targeting autophagy by dietary means elicited beneficial effects in both col6a1 null (col6a1-/-) mice and COL6-RM patients. We previously demonstrated that one-month per os administration of the nutraceutical spermidine reactivates autophagy and ameliorates myofiber defects in col6a1-/- mice but does not elicit functional improvement. Here we show that a 100-day-long spermidine regimen is able to rescue muscle strength in col6a1-/- mice, with also a beneficial impact on mitochondria and neuromuscular junction integrity, without any noticeable side effects. Altogether, these data provide a rationale for the application of spermidine in prospective clinical trials for COL6-RM.Abbreviations: AChR: acetylcholine receptor; BTX: bungarotoxin; CNF: centrally nucleated fibers; Colch: colchicine; COL6: collagen type VI; COL6-RM: COL6-related myopathies; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; NMJ: neuromuscular junction; Spd: spermidine; SQSTM1/p62: sequestosome 1; TA: tibialis anterior; TOMM20: translocase of outer mitochondrial membrane 20; TUNEL: terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling.


Asunto(s)
Enfermedades Musculares , Espermidina , Humanos , Ratones , Animales , Espermidina/farmacología , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Estudios Prospectivos , Autofagia/fisiología , Enfermedades Musculares/metabolismo , Músculo Esquelético/metabolismo
3.
JCI Insight ; 8(15)2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37551712

RESUMEN

Age-associated sarcopenia, characterized by a progressive loss in muscle mass and strength, is the largest cause of frailty and disability in the elderly worldwide. Current treatments involve nonpharmacological guidelines that few subjects can abide by, highlighting the need for effective drugs. Preclinical models were employed to test the benefits of RJx-01, a combination drug composed of metformin and galantamine, on sarcopenia. In worms, RJx-01 treatment improved lifespan, locomotion, pharyngeal pumping, and muscle fiber organization. The synergistic effects of RJx-01 were recapitulated in a transgenic mouse model that displays an exacerbated aging phenotype (Opa1-/-). In these mice, RJx-01 ameliorated physical performance, muscle mass and force, neuromuscular junction stability, and systemic inflammation. RJx-01 also improved physical performance and muscle strength in 22-month-old WT mice and also improved skeletal muscle ultrastructure, mitochondrial morphology, autophagy, lysosomal function, and satellite cell content. Denervation and myofiber damage were decreased in RJx-01-treated animals compared with controls. RJx-01 improved muscle quality rather than quantity, indicating that the improvement in quality underlies the beneficial effects of the combination drug. The studies herein indicate synergistic beneficial effects of RJx-01 in the treatment of sarcopenia and support the pursuit of RJx-01 in a human clinical trial as a therapeutic intervention for sarcopenia.


Asunto(s)
Metformina , Sarcopenia , Humanos , Ratones , Animales , Anciano , Lactante , Sarcopenia/tratamiento farmacológico , Galantamina/farmacología , Metformina/farmacología , Envejecimiento/fisiología , Músculo Esquelético/patología , Ratones Transgénicos
4.
J Physiol ; 600(23): 5055-5075, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36255030

RESUMEN

Skeletal muscle weakness has been associated with different pathological conditions, including sarcopenia and muscular dystrophy, and is accompanied by altered mammalian target of rapamycin (mTOR) signalling. We wanted to elucidate the functional role of mTOR in muscle contractility. Most loss-of-function studies for mTOR signalling have used the drug rapamycin to inhibit some of the signalling downstream of mTOR. However, given that rapamycin does not inhibit all mTOR signalling completely, we generated a double knockout for mTOR and for the scaffold protein of mTORC1, raptor, in skeletal muscle. We found that double knockout in mice results in a more severe phenotype compared with deletion of raptor or mTOR alone. Indeed, these animals display muscle weakness, increased fibre denervation and a slower muscle relaxation following tetanic stimulation. This is accompanied by a shift towards slow-twitch fibres and changes in the expression levels of calcium-related genes, such as Serca1 and Casq1. Double knockout mice show a decrease in calcium decay kinetics after tetanus in vivo, suggestive of a reduced calcium reuptake. In addition, RNA sequencing analysis revealed that many downregulated genes, such as Tcap and Fhod3, are linked to sarcomere organization. These results suggest a key role for mTOR signalling in maintaining proper fibre relaxation in skeletal muscle. KEY POINTS: Skeletal muscle wasting and weakness have been associated with different pathological conditions, including sarcopenia and muscular dystrophy, and are accompanied by altered mammalian target of rapamycin (mTOR) signalling. Mammalian target of rapamycin plays a crucial role in the maintenance of muscle mass and functionality. We found that the loss of both mTOR and raptor results in contractile abnormalities, with severe muscle weakness and delayed relaxation following tetanic stimulation. These results are associated with alterations in the expression of genes involved in sarcomere organization and calcium handling and with an impairment in calcium reuptake after contraction. Taken together, these results provide a mechanistic insight into the role of mTOR in muscle contractility.


Asunto(s)
Proteína Reguladora Asociada a mTOR , Sarcopenia , Serina-Treonina Quinasas TOR , Animales , Ratones , Calcio/metabolismo , Ratones Noqueados , Debilidad Muscular , Músculo Esquelético/fisiología , Proteína Reguladora Asociada a mTOR/genética , Proteína Reguladora Asociada a mTOR/metabolismo , Sarcopenia/metabolismo , Sirolimus/farmacología , Sirolimus/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Eliminación de Gen
5.
J Cachexia Sarcopenia Muscle ; 13(1): 648-661, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34741441

RESUMEN

BACKGROUND: Cancer-related muscle wasting occurs in most cancer patients. An important regulator of adult muscle mass and function is the Akt-mTORC1 pathway. While Akt-mTORC1 signalling is important for adult muscle homeostasis, it is also a major target of numerous cancer treatments. Which role Akt-mTORC1 signalling plays during cancer cachexia in muscle is currently not known. Here, we aimed to determine how activation or inactivation of the pathway affects skeletal muscle during cancer cachexia. METHODS: We used inducible, muscle-specific Raptor ko (mTORC1) mice to determine the effect of reduced mTOR signalling during cancer cachexia. On the contrary, in order to understand if skeletal muscles maintain their anabolic capacity and if activation of Akt-mTORC1 signalling can reverse cancer cachexia, we generated mice in which we can inducibly activate Akt specifically in skeletal muscles. RESULTS: We found that mTORC1 signalling is impaired during cancer cachexia, using the Lewis lung carcinoma and C26 colon cancer model, and is accompanied by a reduction in protein synthesis rates of 57% (P < 0.01). Further reduction of mTOR signalling, as seen in Raptor ko animals, leads to a 1.5-fold increase in autophagic flux (P > 0.001), but does not further increase muscle wasting. On the other hand, activation of Akt-mTORC1 signalling in already cachectic animals completely reverses the 15-20% loss in muscle mass and force (P < 0.001). Interestingly, Akt activation only in skeletal muscle completely normalizes the transcriptional deregulation observed in cachectic muscle, despite having no effect on tumour size or spleen mass. In addition to stimulating muscle growth, it is also sufficient to prevent the increase in protein degradation normally observed in muscles from tumour-bearing animals. CONCLUSIONS: Here, we show that activation of Akt-mTORC1 signalling is sufficient to completely revert cancer-dependent muscle wasting. Intriguingly, these results show that skeletal muscle maintains its anabolic capacities also during cancer cachexia, possibly giving a rationale behind some of the beneficial effects observed in exercise in cancer patients.


Asunto(s)
Caquexia , Carcinoma Pulmonar de Lewis , Animales , Caquexia/patología , Carcinoma Pulmonar de Lewis/patología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Músculo Esquelético/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo
6.
FASEB J ; 35(12): e22031, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34767636

RESUMEN

Loss of skeletal muscle mass and force is of critical importance in numerous pathologies, like age-related sarcopenia or cancer. It has been shown that the Akt-mTORC1 pathway is critical for stimulating adult muscle mass and function, however, it is unknown if mTORC1 is the only mediator downstream of Akt and which intracellular processes are required for functional muscle growth. Here, we show that loss of Raptor reduces muscle hypertrophy after Akt activation and completely prevents increases in muscle force. Interestingly, the residual hypertrophy after Raptor deletion can be completely prevented by administration of the mTORC1 inhibitor rapamycin. Using a quantitative proteomics approach we find that loss of Raptor affects the increases in mitochondrial proteins, while rapamycin mainly affects ribosomal proteins. Taken together, these results suggest that mTORC1 is the key mediator of Akt-dependent muscle growth and its regulation of the mitochondrial proteome is critical for increasing muscle force.


Asunto(s)
Hipertrofia/fisiopatología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Proteoma/metabolismo , Proteína Reguladora Asociada a mTOR/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/patología , Músculo Esquelético/patología , Fosforilación , Proteoma/análisis , Transducción de Señal
7.
Skelet Muscle ; 11(1): 24, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34727990

RESUMEN

BACKGROUND: Human skeletal muscle is composed of three major fiber types, referred to as type 1, 2A, and 2X fibers. This heterogeneous cellular composition complicates the interpretation of studies based on whole skeletal muscle lysate. A single-fiber proteomics approach is required to obtain a fiber-type resolved quantitative information on skeletal muscle pathophysiology. METHODS: Single fibers were dissected from vastus lateralis muscle biopsies of young adult males and processed for mass spectrometry-based single-fiber proteomics. We provide and analyze a resource dataset based on relatively pure fibers, containing at least 80% of either MYH7 (marker of slow type 1 fibers), MYH2 (marker of fast 2A fibers), or MYH1 (marker of fast 2X fibers). RESULTS: In a dataset of more than 3800 proteins detected by single-fiber proteomics, we selected 404 proteins showing a statistically significant difference among fiber types. We identified numerous type 1 or 2X fiber type-specific protein markers, defined as proteins present at 3-fold or higher levels in these compared to other fiber types. In contrast, we could detect only two 2A-specific protein markers in addition to MYH2. We observed three other major patterns: proteins showing a differential distribution according to the sequence 1 > 2A > 2X or 2X > 2A > 1 and type 2-specific proteins expressed in 2A and 2X fibers at levels 3 times greater than in type 1 fibers. In addition to precisely quantifying known fiber type-specific protein patterns, our study revealed several novel features of fiber type specificity, including the selective enrichment of components of the dystrophin and integrin complexes, as well as microtubular proteins, in type 2X fibers. The fiber type-specific distribution of some selected proteins revealed by proteomics was validated by immunofluorescence analyses with specific antibodies. CONCLUSION: We here show that numerous muscle proteins, including proteins whose function is unknown, are selectively enriched in specific fiber types, pointing to potential implications in muscle pathophysiology. This reinforces the notion that single-fiber proteomics, together with recently developed approaches to single-cell proteomics, will be instrumental to explore and quantify muscle cell heterogeneity.


Asunto(s)
Músculo Esquelético , Proteómica , Humanos , Masculino , Fibras Musculares Esqueléticas , Proteínas Musculares
8.
Front Cell Dev Biol ; 8: 580933, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33134297

RESUMEN

The induction of autophagy, the catabolic pathway by which damaged or unnecessary cellular components are subjected to lysosome-mediated degradation and recycling, is impaired in Collagen VI (COL6) null mice and COL6-related myopathies. This autophagic impairment causes an accumulation of dysfunctional mitochondria, which in turn leads to myofiber degeneration. Our previous work showed that reactivation of autophagy in COL6-related myopathies is beneficial for muscle structure and function both in the animal model and in patients. Here we show that pterostilbene (Pt)-a non-toxic polyphenol, chemically similar to resveratrol but with a higher bioavailability and metabolic stability-strongly promotes in vivo autophagic flux in the skeletal muscle of both wild-type and COL6 null mice. Reactivation of autophagy in COL6-deficient muscles was also paralleled by several beneficial effects, including significantly decreased incidence of spontaneous apoptosis, recovery of ultrastructural defects and muscle remodeling. These findings point at Pt as an effective autophagy-inducing nutraceutical for skeletal muscle with great potential in counteracting the major pathogenic hallmarks of COL6-related myopathies, a valuable feature that may be also beneficial in other muscle pathologies characterized by defective regulation of the autophagic machinery.

9.
Acta Physiol (Oxf) ; 230(1): e13496, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32408395

RESUMEN

AIM: Resistance exercise increases muscle mass over time. However, the early signalling events leading to muscle growth are not yet well-defined. Here, we aim to identify new signalling pathways important for muscle remodelling after exercise. METHODS: We performed a phosphoproteomics screen after a single bout of exercise in mice. As an exercise model we used unilateral electrical stimulation in vivo and treadmill running. We analysed muscle biopsies from human subjects to verify if our findings in murine muscle also translate to exercise in humans. RESULTS: We identified a new phosphorylation site on Myocardin-Related Transcription Factor B (MRTF-B), a co-activator of serum response factor (SRF). Phosphorylation of MRTF-B is required for its nuclear translocation after exercise and is accompanied by the transcription of the SRF target gene Fos. In addition, high-intensity exercise also remodels chromatin at specific SRF target gene loci through the phosphorylation of histone 3 on serine 10 in myonuclei of both mice and humans. Ablation of the MAP kinase member MSK1/2 is sufficient to prevent this histone phosphorylation, reduce induction of SRF-target genes, and prevent increases in protein synthesis after exercise. CONCLUSION: Our results identify a new exercise signalling fingerprint in vivo, instrumental for exercise-induced protein synthesis and potentially muscle growth.


Asunto(s)
Cromatina/química , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal , Factor de Respuesta Sérica , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Ejercicio Físico , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Biosíntesis de Proteínas , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo
11.
J Cachexia Sarcopenia Muscle ; 11(1): 208-225, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31651100

RESUMEN

BACKGROUND: Skeletal muscle is a plastic tissue that can adapt to different stimuli. It is well established that Mammalian Target of Rapamycin Complex 1 (mTORC1) signalling is a key modulator in mediating increases in skeletal muscle mass and function. However, the role of mTORC1 signalling in adult skeletal muscle homeostasis is still not well defined. METHODS: Inducible, muscle-specific Raptor and mTOR k.o. mice were generated. Muscles at 1 and 7 months after deletion were analysed to assess muscle histology and muscle force. RESULTS: We found no change in muscle size or contractile properties 1 month after deletion. Prolonging deletion of Raptor to 7 months, however, leads to a very marked phenotype characterized by weakness, muscle regeneration, mitochondrial dysfunction, and autophagy impairment. Unexpectedly, reduced mTOR signalling in muscle fibres is accompanied by the appearance of markers of fibre denervation, like the increased expression of the neural cell adhesion molecule (NCAM). Both muscle-specific deletion of mTOR or Raptor, or the use of rapamycin, was sufficient to induce 3-8% of NCAM-positive fibres (P < 0.01), muscle fibrillation, and neuromuscular junction (NMJ) fragmentation in 24% of examined fibres (P < 0.001). Mechanistically, reactivation of autophagy with the small peptide Tat-beclin1 is sufficient to prevent mitochondrial dysfunction and the appearance of NCAM-positive fibres in Raptor k.o. muscles. CONCLUSIONS: Our study shows that mTOR signalling in skeletal muscle fibres is critical for maintaining proper fibre innervation, preserving the NMJ structure in both the muscle fibre and the motor neuron. In addition, considering the beneficial effects of exercise in most pathologies affecting the NMJ, our findings suggest that part of these beneficial effects of exercise are through the well-established activation of mTORC1 in skeletal muscle during and after exercise.


Asunto(s)
Músculo Esquelético/fisiopatología , Unión Neuromuscular/fisiopatología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados
12.
Redox Biol ; 24: 101176, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30921636

RESUMEN

Selenoprotein N (SELENON) is an endoplasmic reticulum (ER) protein whose loss of function leads to a congenital myopathy associated with insulin resistance (SEPN1-related myopathy). The exact cause of the insulin resistance in patients with SELENON loss of function is not known. Skeletal muscle is the main contributor to insulin-mediated glucose uptake, and a defect in this muscle-related mechanism triggers insulin resistance and glucose intolerance. We have studied the chain of events that connect the loss of SELENON with defects in insulin-mediated glucose uptake in muscle cells and the effects of this on muscle performance. Here, we show that saturated fatty acids are more lipotoxic in SELENON-devoid cells, and blunt the insulin-mediated glucose uptake of SELENON-devoid myotubes by increasing ER stress and mounting a maladaptive ER stress response. Furthermore, the hind limb skeletal muscles of SELENON KO mice fed a high-fat diet mirrors the features of saturated fatty acid-treated myotubes, and show signs of myopathy with a compromised force production. These findings suggest that the absence of SELENON together with a high-fat dietary regimen increases susceptibility to insulin resistance by triggering a chronic ER stress in skeletal muscle and muscle weakness. Importantly, our findings suggest that environmental cues eliciting ER stress in skeletal muscle (such as a high-fat diet) affect the pathological phenotype of SEPN1-related myopathy and can therefore contribute to the assessment of prognosis beyond simple genotype-phenotype correlations.


Asunto(s)
Estrés del Retículo Endoplásmico , Ácidos Grasos/metabolismo , Resistencia a la Insulina , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Selenoproteínas/genética , Animales , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ácidos Grasos/farmacología , Femenino , Glucosa/metabolismo , Insulina/metabolismo , Masculino , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedades Musculares/etiología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Palmitatos/farmacología , Fenotipo , Transducción de Señal
13.
Cell Rep ; 23(5): 1342-1356, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29719249

RESUMEN

Protein aggregates and cytoplasmic vacuolization are major hallmarks of multisystem proteinopathies (MSPs) that lead to muscle weakness. Here, we identify METTL21C as a skeletal muscle-specific lysine methyltransferase. Insertion of a ß-galactosidase cassette into the Mettl21c mouse locus revealed that METTL21C is specifically expressed in MYH7-positive skeletal muscle fibers. Ablation of the Mettl21c gene reduced endurance capacity and led to age-dependent accumulation of autophagic vacuoles in skeletal muscle. Denervation-induced muscle atrophy highlighted further impairments of autophagy-related proteins, including LC3, p62, and cathepsins, in Mettl21c-/- muscles. In addition, we demonstrate that METTL21C interacts with the ATPase p97 (VCP), which is mutated in various human MSP conditions. We reveal that METTL21C trimethylates p97 on the Lys315 residue and found that loss of this modification reduced p97 hexamer formation and ATPase activity in vivo. We conclude that the methyltransferase METTL21C is an important modulator of protein degradation in skeletal muscle under both normal and enhanced protein breakdown conditions.


Asunto(s)
Autofagia , Metiltransferasas/metabolismo , Músculo Esquelético/enzimología , Proteolisis , Proteína que Contiene Valosina/metabolismo , Animales , Masculino , Metilación , Metiltransferasas/genética , Ratones , Ratones Noqueados , Proteína que Contiene Valosina/genética
14.
Front Physiol ; 8: 968, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29255421

RESUMEN

Skeletal muscle mass is a result of the balance between protein breakdown and protein synthesis. It has been shown that multiple conditions of muscle atrophy are characterized by the common regulation of a specific set of genes, termed atrogenes. It is not known whether various models of muscle hypertrophy are similarly regulated by a common transcriptional program. Here, we characterized gene expression changes in three different conditions of muscle growth, examining each condition during acute and chronic phases. Specifically, we compared the transcriptome of Extensor Digitorum Longus (EDL) muscles collected (1) during the rapid phase of postnatal growth at 2 and 4 weeks of age, (2) 24 h or 3 weeks after constitutive activation of AKT, and (3) 24 h or 3 weeks after overload hypertrophy caused by tenotomy of the Tibialis Anterior muscle. We observed an important overlap between significantly regulated genes when comparing each single condition at the two different timepoints. Furthermore, examining the transcriptional changes occurring 24 h after a hypertrophic stimulus, we identify an important role for genes linked to a stress response, despite the absence of muscle damage in the AKT model. However, when we compared all different growth conditions, we did not find a common transcriptional fingerprint. On the other hand, all conditions showed a marked increase in mTORC1 signaling and increased ribosome biogenesis, suggesting that muscle growth is characterized more by translational, than transcriptional regulation.

15.
Cell Rep ; 17(2): 501-513, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27705797

RESUMEN

Loss of skeletal muscle mass and force aggravates age-related sarcopenia and numerous pathologies, such as cancer and diabetes. The AKT-mTORC1 pathway plays a major role in stimulating adult muscle growth; however, the functional role of its downstream mediators in vivo is unknown. Here, we show that simultaneous inhibition of mTOR signaling to both S6K1 and 4E-BP1 is sufficient to reduce AKT-induced muscle growth and render it insensitive to the mTORC1-inhibitor rapamycin. Surprisingly, lack of mTOR signaling to 4E-BP1 only, or deletion of S6K1 alone, is not sufficient to reduce muscle hypertrophy or alter its sensitivity to rapamycin. However, we report that, while not required for muscle growth, S6K1 is essential for maintaining muscle structure and force production. Hypertrophy in the absence of S6K1 is characterized by compromised ribosome biogenesis and the formation of p62-positive protein aggregates. These findings identify S6K1 as a crucial player for maintaining muscle function during hypertrophy.


Asunto(s)
Proteínas Portadoras/genética , Hipertrofia/genética , Músculo Esquelético/metabolismo , Fosfoproteínas/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Serina-Treonina Quinasas TOR/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Factores Eucarióticos de Iniciación , Humanos , Hipertrofia/metabolismo , Hipertrofia/patología , Ratones , Ratones Noqueados , Músculo Esquelético/crecimiento & desarrollo , Proteína Oncogénica v-akt/genética , Péptidos/genética , Fosfoproteínas/metabolismo , Fosforilación , Agregado de Proteínas/genética , Ribosomas/genética , Ribosomas/metabolismo , Sarcopenia/genética , Sarcopenia/metabolismo , Sarcopenia/patología , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...